A technique is presented for controlling gas turbine engines that maintains thrust while minimising fuel consumption. A neural network is used to model the engine. Fuel, which is one of the inputs to the model, is decremented and the model used to forward propagate the consequences, one of which is, typically, reduced thrust. Error derivatives to restore the thrust are backpropagated through the network and the error derivatives of the inputs to the model are then used to adjust controllable engine parameters to restore thrust. This iterative technique is continued until the optimum operating point is found. Changes to the engine as a result of temperature change and wear are tracked by updating the neural network engine model online.
Using neural networks to optimise gas turbine aero engines
Neuronale Netze werden in der Luftfahrt eingesetzt, um den Betrieb einer Gasturbine hinsichtlich Verbrauch und Schub zu optimieren
Computing and Control Engineering Journal ; 8 , 3 ; 129-135
1997
7 Seiten, 1 Quelle
Article (Journal)
English
Gasturbine , Schubkraft , Luftfahrt , neuronales Netz , Verschleiß , Brennstoffverbrauch , Minimierung , Adaptivregelung , Optimalwertregelung , selbsteinstellendes System , Iterationsverfahren , Modelluntersuchung , Betriebsparameter , lernender Automat , Maschinensteuerung , neuronaler Regler , Rückwärtsausbreitung
Turbine Stresses in Aero-Engines
Emerald Group Publishing | 1952
|Fuels for Gas-Turbine Aero-Engines
Emerald Group Publishing | 1951
|Optimisation of aero gas turbine engines
Online Contents | 2001
|Fuels for gas-turbine aero-engines
Engineering Index Backfile | 1951
|Neural networks for the maintenance of aero engines
AIAA | 1995
|