The propulsion system plays a key role in each unmanned aerial vehicle. Considering different multirotor platforms we may observe that mostly the dynamics and performance of the particular vehicle is strictly depended on the drive unit. In this paper we focus on the problem of modeling and identification of the propulsion system consisting of an electronic speed controller, electric brushless direct current motor and propeller. We propose a multiple-input and multiple-output nonlinear model of the propulsion unit based on the block oriented modeling with the static nonlinearities at the input and linear dynamical part at the output. Such model enhanced with the aerodynamics theory of a propeller should be suitable and detailed enough to provide the simulation, control algorithms prototyping and solution verification under the circumstances of designing the vertical take-off and landing unmanned platform.
Modeling and identification of electric propulsion system for multirotor unmanned aerial vehicle design
2014-05-01
1216425 byte
Conference paper
Electronic Resource
English
Reconfigurable propulsion mechanisms of a multirotor aerial vehicle
European Patent Office | 2023
|