Localization within high definition maps is a key problem for autonomous navigation as vehicles need to extract information from them. In addition, many navigation tasks are defined with respect to map features. For instance, estimating the cross-track and along-track gaps of a vehicle with respect to a given path is critical for lane keeping or intersection management. Map-based localization is also important for cooperative tasks like platooning in curved roads or lane changing. This work studies different methods to compute map-based coordinates defined as curvilinear abscissa, lateral distance and heading with respect to paths in high definition maps. Four approaches using polylines, lanelets and splines are compared. Thanks to real experiments, the discontinuity issues of polylines used in current high definition maps are evaluated and we discuss advantages and drawbacks of splines-based and lanelet methods. We also report experimental results corresponding to a platoon of two vehicles in curved roads and evaluate the effects of the use of low cost GNSS receivers.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Map-based curvilinear coordinates for autonomous vehicles


    Contributors:


    Publication date :

    2017-10-01


    Size :

    458434 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Motion planning in curvilinear coordinates for autonomous vehicles

    SEEGMILLER NEAL / BARONE PATRICK / VENATOR ED | European Patent Office | 2024

    Free access

    MOTION PLANNING IN CURVILINEAR COORDINATES FOR AUTONOMOUS VEHICLES

    SEEGMILLER NEAL / BARONE PATRICK / VENATOR ED | European Patent Office | 2022

    Free access

    MOTION PLANNING IN CURVILINEAR COORDINATES FOR AUTONOMOUS VEHICLES

    SEEGMILLER NEAL / BARONE PATRICK / VENATOR ED | European Patent Office | 2022

    Free access

    Extended Object Tracking in Curvilinear Road Coordinates for Autonomous Driving

    Dahal, Pragyan / Mentasti, Simone / Arrigoni, Stefano et al. | IEEE | 2023


    Global Stability in Curvilinear Coordinates

    Merle, Xavier / Robinet, Jean-Christophe | AIAA | 2009