In literature, Extended Object Tracking (EOT) algorithms developed for autonomous driving predominantly provide obstacles state estimation in cartesian coordinates in the Vehicle Reference Frame. However, in many scenarios, state representation in road-aligned curvilinear coordinates is preferred when implementing autonomous driving subsystems like cruise control, lane-keeping assist, platooning, etc. This paper proposes a Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter with an Unscented Kalman Filter (UKF) estimator that provides obstacle state estimates in curvilinear road coordinates. We employ a hybrid sensor fusion architecture between Lidar and Radar sensors to obtain rich measurement point representations for EOT. The measurement model for the UKF estimator is developed with the integration of coordinate conversion from curvilinear road coordinates to cartesian coordinates by using cubic hermit spline road model. The proposed algorithm is validated through Matlab Driving Scenario Designer simulation and experimental data collected at Monza Eni Circuit. The Experimental Dataset will be made publicly available upon the paper acceptance.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Extended Object Tracking in Curvilinear Road Coordinates for Autonomous Driving


    Contributors:

    Published in:

    Publication date :

    2023-02-01


    Size :

    3516384 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Map-based curvilinear coordinates for autonomous vehicles

    Hery, Elwan / Masi, Stefano / Xu, Philippe et al. | IEEE | 2017


    MOTION PLANNING IN CURVILINEAR COORDINATES FOR AUTONOMOUS VEHICLES

    SEEGMILLER NEAL / BARONE PATRICK / VENATOR ED | European Patent Office | 2022

    Free access

    MOTION PLANNING IN CURVILINEAR COORDINATES FOR AUTONOMOUS VEHICLES

    SEEGMILLER NEAL / BARONE PATRICK / VENATOR ED | European Patent Office | 2022

    Free access

    Motion planning in curvilinear coordinates for autonomous vehicles

    SEEGMILLER NEAL / BARONE PATRICK / VENATOR ED | European Patent Office | 2024

    Free access

    Global Stability in Curvilinear Coordinates

    Merle, X. / Robinet, J. / American Institute of Aeronautics and Asronautics | British Library Conference Proceedings | 2009