Trajectory planning for automated parking has been widely known as more challenging than that for on-road driving due to the nonconvex kinematics, high-dimensional collision-avoidance constraints, and difficulty to determine the global optimum among many local optima. Changes in a dynamic environment easily make a previously planned parking trajectory invalid. Compared with the on-road planners which evade newly emerged obstacles via a nudge or side pass, a parking planner has to replan a completely different trajectory for evasion. A qualified online trajectory replanner should run fast, ensure trajectory continuity, and avoid extra halfway stops. This paper proposes a parallel stitching strategy to fulfill these demands. When the ego vehicle tracks an originally planned parking trajectory online, an evasive trajectory begins to be replanned once a new obstacle is found to block the way. Thereafter, a connective trajectory is planned, the two ends of which are future poses along the original trajectory and the evasive trajectory, respectively. The two ends of the connective trajectory are chosen by greedily evaluating various candidates via parallel computation, which ensures that our replanner runs fast with high solution quality. According to our real-world experiments and simulations, the proposed replanner outperforms the existing ones w.r.t. solution speed and quality. As an interesting feature, our proposed replanner also supports switching to a better homotopy class online.


    Access

    Download


    Export, share and cite



    Title :

    Online Trajectory Replanning for Sudden Environmental Changes During Automated Parking: A Parallel Stitching Method


    Contributors:
    Li, Bai (author) / Yin, Zhuyan (author) / Ouyang, Yakun (author) / Zhang, Youmin (author) / Zhong, Xiang (author) / Tang, Shiqi (author)

    Published in:

    Publication date :

    2022-09-01


    Size :

    2306351 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Trajectory Tracking and Online Replanning for Mars Entry

    Duan, Guangfei / Rovira Navarro, Marc / Mease, Kenneth D. | AIAA | 2016


    METHOD FOR DYNAMICALLY REPLANNING PARKING TRACK

    YOO YONG-HO / BENEDIKT WARTUSCH / HENDRIK DEUSCH et al. | European Patent Office | 2023

    Free access

    TRAJECTORY TRACKING AND ONLINE REPLANNING FOR MARS ENTRY

    Duan, Guangfei / Navarro, Marc Rovira / Mease, Kenneth D. | British Library Conference Proceedings | 2016



    ITERATIVE TRAJECTORY REPLANNING FOR EMERGENCY OBSTACLE AVOIDANCE

    JAMES ANDREW DALLAS / MICHAEL THOMPSON / JONATHAN YAN MING GOH et al. | European Patent Office | 2024

    Free access