The characterization and device physics study of a lateral DMOS transistor in the cryogenic regime (∼ + 20 °C to − 180 °C) is presented in this paper. Normally, the characteristics of lateral MOSFETs improve with decreasing temperature. However, the asymmetrical nature of LDMOS devices, owing to the presence of a lightly doped drift region, causes the behavior to deviate from the expected characteristics at deep cryo temperatures. The output current is expected to increase with decreasing temperature, but our observations indicate that the current initially increases and then starts decreasing after a certain transition temperature. This is attributed to the carrier freeze-out phenomenon occurring in the drift region due to lower ionization energies available to the carriers. The paper will report results on the transfer and output characteristics of the JPL LDMOS devices as temperature decreases and attempt to explain the observation with physical reasoning.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Cryogenic characterization of lateral DMOS transistors for lunar applications


    Contributors:
    Kashyap, A. S. (author) / Mudholkar, M. (author) / Mantooth, H. A. (author) / Vo, T. (author) / Mojarradi, M. (author)


    Publication date :

    2009-03-01


    Size :

    701979 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Development of Lateral DMOS using Process and Device Simulation

    Shigematsu, K. / Kamiya, T. / Nakayama, Y. et al. | British Library Conference Proceedings | 1998


    Development of Lateral DMOS Using Process and Device Simulation

    Shigematsu, Koichi / Iida, Makio / Kamiya, Toyoharu et al. | SAE Technical Papers | 1998


    Development of lateral DMOS using process and device simulation

    Shigematsu,K. / Kamiya,T. / Nakayama,Y. et al. | Automotive engineering | 1998