In some embodiments, a method for autonomous navigation of an unmanned aerial vehicle (UAV) is provided. The UAV determines a tracked position using at least one positioning sensor of the UAV. The UAV captures an image using a camera of the UAV. The UAV determines a visual position confidence area using the captured image. The UAV checks the tracked position using the visual position confidence area to determine whether the tracked position is accurate. In response to determining that the tracked position is not accurate, the UAV causes a corrective action based on the visual position confidence area to be taken.


    Access

    Download


    Export, share and cite



    Title :

    CORRECTING ERRONEOUS UAV POSITIONING INFORMATION USING SEMANTICALLY SEGMENTED IMAGES


    Contributors:
    SHOEB ALI (author) / JOURDAN DAMIEN (author) / GABOR JEREMIE (author)

    Publication date :

    2024-12-26


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    IPC:    G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / B64U / G06V



    CORRECTING ERRONEOUS UAV POSITIONING INFORMATION USING SEMANTICALLY SEGMENTED IMAGES

    SHOEB ALI / JOURDAN DAMIEN / GABOR JEREMIE | European Patent Office | 2025

    Free access

    LOCALIZATION USING SEMANTICALLY SEGMENTED IMAGES

    ADAMS DEREK / KAISER NATHANIEL JON / BOSSE MICHAEL CARSTEN | European Patent Office | 2020

    Free access

    Visual Semantic Context of Semantically Segmented Aerial Images

    Park, Junwoo / Kim, Sungjoong / Hong, Kyungwoo et al. | Springer Verlag | 2022


    Curb detection in urban traffic scenarios using LiDARs point cloud and semantically segmented color images

    Catalina Deac, Selma Evelyn / Giosan, Ion / Nedevschi, Sergiu | IEEE | 2019