The invention discloses a lithium ion battery fault diagnosis method based on voltage reconstruction, and the method comprises the steps: carrying out the processing of voltage values collected by a sensor in batches, and guaranteeing that the format of the voltage values can be input into a subsequent network for training and reconstruction; a voltage reconstruction TransAD network is constructed, reasoning is quickly executed according to wider time trend information in data by using an attention-based sequence encoder, and multi-modal feature extraction and adversarial training are realized by using a self-regulation mechanism based on a target score; a TransAD network trained by normal voltage data is used for reconstructing voltage, then the reconstructed voltage data and actual voltage data are subtracted, and the difference is subjected to fault division through a dynamic threshold judgment module.

    本发明公开了一种基于电压重构的锂离子电池故障诊断方法,对传感器采集到的电压值进行分批次处理,保证其格式可以输入到后续的网络中进行训练和重构;构建了一个电压重构TranAD网络,通过使用基于注意力的序列编码器,根据数据中更广泛的时间趋势信息快速执行推理,使用基于目标分数的自调节机制来实现多模态特征提取和对抗训练;将用正常电压数据训练好的TranAD网络用于重构电压,然后将重构的电压数据与实际电压数据进行作差,并将差值通过动态阈值判断模块进行故障划分。


    Access

    Download


    Export, share and cite



    Title :

    Lithium ion battery fault diagnosis method based on voltage reconstruction


    Additional title:

    一种基于电压重构的锂离子电池故障诊断方法


    Contributors:
    LI SHUN (author) / JI CHANGJIAN (author) / LIU GUOLIANG (author) / JIANG DAWEI (author) / LIU XUEYING (author) / ZHANG PENGFEI (author) / FAN GUANGLI (author) / ZHAO ZEXI (author) / LIU TIANSHU (author) / LIANG XU (author)

    Publication date :

    2024-11-29


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G01R Messen elektrischer Größen , MEASURING ELECTRIC VARIABLES / B60L PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES , Antrieb von elektrisch angetriebenen Fahrzeugen / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen



    Model-Based Multi-Fault Diagnosis for Lithium-Ion Battery Systems

    Zhang, Kai / Lin, Xianke / Hu, Xiaosong et al. | SAE Technical Papers | 2022


    Model-Based Multi-Fault Diagnosis for Lithium-Ion Battery Systems

    Zhang, Kai / Hu, Xiaosong / Deng, Zhongwei et al. | British Library Conference Proceedings | 2022



    A Quantitative Fault Diagnosis Method for Lithium-Ion Battery Based on MD-LSTM

    Li, Jinglun / Mao, Ziheng / Gu, Xin et al. | IEEE | 2025