Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Data-Driven Surrogate Modeling Approaches for Parametric Prediction and Uncertainty Quantification of Fluid Flows


    Contributors:

    Conference:

    AIAA SCITECH 2023 Forum



    Publication date :

    2023-01-01




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    UNCERTAINTY QUANTIFICATION IN VISCOUS HYPERSONIC FLOWS USING GRADIENT INFORMATION AND SURROGATE MODELING

    Lockwood, B. / Rumpfkeil, M. / Yamazaki, W. et al. | British Library Conference Proceedings | 2011


    Data-driven Surrogate Modeling using Deep Learning for Uncertainty Quantification of Random Fields

    Palar, Pramudita S. / Stevenson, Rafael / Amalinadhi, Cahya et al. | AIAA | 2023


    Uncertainty Quantification in Viscous Hypersonic Flows using Gradient Information and Surrogate Modeling

    Lockwood, Brian / Rumpfkeil, Markus / Yamazaki, Wataru et al. | AIAA | 2011


    A Novel Surrogate Modeling Technique for Parametric Uncertainty Quantification in Simulation-Based Design

    Riley, M. / Grandhi, R. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2012