Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Data-Driven Surrogate Modeling Approaches for Parametric Prediction and Uncertainty Quantification of Fluid Flows


    Beteiligte:
    Ding, Weiming (Autor:in) / Milan, Petro Junior (Autor:in) / Yang, Vigor (Autor:in)

    Kongress:

    AIAA SCITECH 2023 Forum



    Erscheinungsdatum :

    01.01.2023




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    UNCERTAINTY QUANTIFICATION IN VISCOUS HYPERSONIC FLOWS USING GRADIENT INFORMATION AND SURROGATE MODELING

    Lockwood, B. / Rumpfkeil, M. / Yamazaki, W. et al. | British Library Conference Proceedings | 2011


    Data-driven Surrogate Modeling using Deep Learning for Uncertainty Quantification of Random Fields

    Palar, Pramudita S. / Stevenson, Rafael / Amalinadhi, Cahya et al. | AIAA | 2023


    Uncertainty Quantification in Viscous Hypersonic Flows using Gradient Information and Surrogate Modeling

    Lockwood, Brian / Rumpfkeil, Markus / Yamazaki, Wataru et al. | AIAA | 2011


    A Novel Surrogate Modeling Technique for Parametric Uncertainty Quantification in Simulation-Based Design

    Riley, M. / Grandhi, R. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2012