Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Data-driven Surrogate Modeling using Deep Learning for Uncertainty Quantification of Random Fields


    Contributors:

    Conference:

    AIAA SCITECH 2023 Forum



    Publication date :

    2023-01-01




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English




    Surrogate model uncertainty quantification for active learning reliability analysis

    PANG, Yong / ZHANG, Shuai / LIANG, Pengwei et al. | Elsevier | 2024

    Free access

    UNCERTAINTY QUANTIFICATION IN VISCOUS HYPERSONIC FLOWS USING GRADIENT INFORMATION AND SURROGATE MODELING

    Lockwood, B. / Rumpfkeil, M. / Yamazaki, W. et al. | British Library Conference Proceedings | 2011


    Uncertainty Quantification in Viscous Hypersonic Flows using Gradient Information and Surrogate Modeling

    Lockwood, Brian / Rumpfkeil, Markus / Yamazaki, Wataru et al. | AIAA | 2011


    Uncertainty Quantification of Material Mechanical Properties Using Surrogate Models

    Smith, C. Frederic / Lapp, Braden / Glavicic, Michael | AIAA | 2016