Optimization problems for trajectory planning in autonomous vehicle racing are characterized by their nonlinearity and nonconvexity. Instead of solving these optimization problems, usually a convex approximation is solved instead to achieve a high update rate. The state of the art convexifies track constraints using sequential linearization (SL), which is a method of relaxing the constraints. Solutions to the relaxed optimization problem are not guaranteed to be feasible in the nonconvex optimization problem.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Sequential Convex Programming Methods for Real-time Optimal Trajectory Planning in Autonomous Vehicle Racing


    Beteiligte:


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    828174 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Sequential Convex Programming Methods for Real-Time Optimal Trajectory Planning in Autonomous Vehicle Racing

    Scheffe, Patrick / Henneken, Theodor Mario / Kloock, Maximilian et al. | IEEE | 2023



    REAL-TIME TRAJECTORY OPTIMIZATION FOR AUTONOMOUS VEHICLE RACING USING SEQUENTIAL LINEARIZATION

    Alrifaee, Bassam / Maczijewski, Janis | British Library Conference Proceedings | 2018



    Trajectory Planning for Competitive Autonomous Racing

    Rowold, Matthias | TIBKAT | 2025

    Freier Zugriff