The existing tracking and recognition methods concentrate mainly on single‐class targets; however, systems for traffic management or intelligent transport often require multi‐class target tracking and recognition in real time. This study proposes an effective multi‐class moving target recognition method that is based on Gaussian mixture part‐based model, which accurately locates objects of interest and recognises their corresponding categories. The method is multi‐threaded and combines soft clustering approach with multiple mixture part based models to provide stable multi‐class target tracking and recognition in video sequences. The highlight of the method is its ability to recognise multi‐class moving targets and to count their numbers in the video sequence captured by a stationary camera with fixed focal length. Another contribution of this study is that an extended part based model is developed for object recognition in real‐world environments, which can improve the overall system performance, lower time costs, and better meet the actual demand of a video system. Experimental results show that the proposed method is viable in real‐time multi‐class moving target tracking and recognition.


    Access

    Download


    Export, share and cite



    Real-time multi-class moving target tracking and recognition

    Zhang, Qing-Nian / Sun, Ya-Dong / Yang, Jie et al. | IET | 2016

    Free access

    Tracking device for tracking moving target in real time

    LI JUNPING / BAO YUHAO / DENG ZHI et al. | European Patent Office | 2022

    Free access

    Moving target classification and tracking from real-time video

    Lipton, A.J. / Fujiyoshi, H. / Patil, R.S. | IEEE | 1998


    Moving Target Classification and Tracking from Real-Time Video

    Lipton, A. J. / Fujiyoshi, H. / Patil, R. S. | British Library Conference Proceedings | 1998


    Real-time target tracking

    Baumela, L. / Maravall, D. | IEEE | 1995