Extensive cracking was found in several cast-in-place concrete culverts in Alabama. This condition can decrease the long-term durability of the culverts. Early-age stress development in concrete is influenced by temperature changes, modulus of elasticity, stress relaxation, shrinkage, thermal coefficient of expansion, and the degree of restraint. The objective of this study is to determine means to mitigate early-age cracking in culverts by evaluating the cracking risk. Finite-element analysis was used to model the early-age stress by accounting for the following factors: construction sequencing, support restraint, concrete constituents, temperature effects, and the time-dependent development of mechanical properties, creep/relaxation, and drying shrinkage. Experimental results from restraint to volume change tests with rigid cracking frames were used to verify the accuracy of the finite-element analysis. A parametric study was performed to quantify the effect of changing joint spacing, joint type, construction sequence, concrete coefficient of thermal expansion, placement season, and concrete type on the risk of early-age cracking. The finite-element model results revealed that the use of the following measures will reduce the risk of early-age cracking in cast-in-place concrete culverts: concrete with lower coefficient of thermal expansion, contraction joints, sand-lightweight concrete or all-lightweight concrete, and scheduling the casting of the culvert wall to minimize the difference in its placement time relative to its previously cast base. Alternatively, to minimize the contribution of thermal effects on risk of cracking, the construction schedule should be developed to avoid concrete placement during hot weather conditions.


    Access

    Download

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Finite-Element Modeling and Analysis of Early-Age Cracking Risk of Cast-In-Place Concrete Culverts


    Additional title:

    Transportation Research Record


    Contributors:


    Publication date :

    2018-05-05




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English