This paper deals with unsteady-state brush tyre models. Starting from tyre-road contact theory, we provide a full analytical solution to the partial differential equations (PDEs) describing the bristle deformation in the adhesion region of the contact patch. We show that the latter can be divided in two different regions, corresponding to two different domains for the solution of the governing PDEs of the system. In the case of constant sliding speed inputs, the steady-state solution coincides with the one provided by the classic steady-state brush theory. For a rectangular contact patch and parabolic pressure distribution, the time trend of the shear stresses is investigated. For the pure interactions (longitudinal, lateral and camber), some important conclusions are drawn about the relaxation length. Finally, an approach to derive simplified formulae for the tangential forces arising in the contact patch is introduced; the tyre formulae obtained by using the proposed approach are not based on the common slip definition, and can be employed when the rolling speed approaches zero. The outlined procedure is applied to the cases of linear tyre forces and parabolic pressure distribution.


    Access

    Download


    Export, share and cite



    Title :

    Unsteady-state brush theory


    Contributors:

    Published in:

    Vehicle System Dynamics ; 59 , 11 ; 1643-1671


    Publication date :

    2021-11-02


    Size :

    29 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown




    Unsteady-State Brush Theory

    Romano, Luigi | Springer Verlag | 2022


    Steady-State Brush Theory

    Romano, Luigi | Springer Verlag | 2022


    Flutter and unsteady lift theory

    Yates, E. C., Jr. | NTRS | 1971



    Unsteady-State Underexpanded Jet Flows

    Chang, I-Shih | AIAA | 2002