This paper quantifies and evaluates, utilising a ‘bottom-up’ approach, the effect on CO2 emissions of a modal shift from short-haul air travel to high-speed rail (HSR), based on projected passenger movements, between Sydney and Melbourne, Australia during the period 2010–2030. To date, peer-reviewed studies assessing the CO2 emissions from these competing modes of high-speed transportation have been restricted principally to a cross-sectional assessment, with a Eurocentric bias. This present comparative study seeks to address a gap in the literature by assessing, longitudinally, the CO2 emissions associated with the proposed operation of HSR against the ‘business-as-usual’ air scenario between Sydney and Melbourne. Under the assumed 50/50 modal shift, and the Australian government's current renewable electricity target, an annual reduction in CO2 emissions of approximately 14% could be achieved when compared with a ‘business-as-usual’ air scenario. This percentage reduction represents a 62 kt reduction in base year, 2010, and a 114 kt reduction in the final year, 2030. In total, the overall reduction achieved by such a modal shift, under the assumed conditions, during the period 2010–2030, equates to approximately 1.87 Mt of CO2. Importantly, if the electrical energy supply for HSR operations was further ‘decarbonised’, then it follows that a greater emission reduction would be achieved.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    High-speed rail's potential for the reduction of carbon dioxide emissions from short haul aviation: a longitudinal study of modal substitution from an energy generation and renewable energy perspective


    Contributors:

    Published in:

    Publication date :

    2013-07-01


    Size :

    18 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English