Pedestrian behavior tends to depend on the type of facility. The flow at bottlenecks, for instance, can exceed the maximal rates observed in straight corridors. Consequently, accurate predictions of pedestrians movements in complex buildings including corridors, corners, bottlenecks, or intersections are difficult tasks for minimal models with a single setting of the parameters. Artificial neural networks are robust algorithms able to identify various types of patterns. In this paper, we will investigate their suitability for forecasting of pedestrian dynamics in complex architectures. Therefore, we develop, train, and test several artificial neural networks for predictions of pedestrian speeds in corridor and bottleneck experiments. The estimations are compared with those of a classical speed-based model. The results show that the neural networks can distinguish the two facilities and significantly improve the prediction of pedestrian speeds.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Prediction of pedestrian dynamics in complex architectures with artificial neural networks


    Contributors:

    Published in:

    Publication date :

    2020-11-01


    Size :

    13 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English





    Pedestrian Detection with Convolutional Neural Networks

    Szarvas, M. / Yoshizawa, A. / Yamamoto, M. et al. | British Library Conference Proceedings | 2005


    Pedestrian detection with convolutional neural networks

    Szarvas, M. / Yoshizawa, A. / Yamamoto, M. et al. | IEEE | 2005