Pedestrian behavior tends to depend on the type of facility. The flow at bottlenecks, for instance, can exceed the maximal rates observed in straight corridors. Consequently, accurate predictions of pedestrians movements in complex buildings including corridors, corners, bottlenecks, or intersections are difficult tasks for minimal models with a single setting of the parameters. Artificial neural networks are robust algorithms able to identify various types of patterns. In this paper, we will investigate their suitability for forecasting of pedestrian dynamics in complex architectures. Therefore, we develop, train, and test several artificial neural networks for predictions of pedestrian speeds in corridor and bottleneck experiments. The estimations are compared with those of a classical speed-based model. The results show that the neural networks can distinguish the two facilities and significantly improve the prediction of pedestrian speeds.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Prediction of pedestrian dynamics in complex architectures with artificial neural networks


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.11.2020


    Format / Umfang :

    13 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Pedestrian Detection with Convolutional Neural Networks

    Szarvas, M. / Yoshizawa, A. / Yamamoto, M. et al. | British Library Conference Proceedings | 2005


    Pedestrian detection with convolutional neural networks

    Szarvas, M. / Yoshizawa, A. / Yamamoto, M. et al. | IEEE | 2005