This chapter proposes another nonlinear PLS method, named as locality-preserving partial least squares (LPPLS), which embeds the nonlinear degenerative and structure-preserving properties of LPP into the PLS model. The core of LPPLS is to replace the role of PCA in PLS with LPP. When extracting the principal components of t i \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{t}_i$$\end{document} and u i \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{u}_i$$\end{document}, two conditions must satisfy: (1) t i \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{t}_i$$\end{document} and u i \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{u}_i$$\end{document} retain the most information about the local nonlinear structure of their respective data sets. (2) The correlation between t i \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{t}_i$$\end{document} and u i \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{u}_i$$\end{document} is the largest. Finally, a quality-related monitoring strategy is established based on LPPLS.


    Access

    Download


    Export, share and cite



    Title :

    Locality-Preserving Partial Least Squares Regression


    Additional title:

    Intelligent Control & Learning Systems


    Contributors:
    Wang, Jing (author) / Zhou, Jinglin (author) / Chen, Xiaolu (author)


    Publication date :

    2022-01-03


    Size :

    16 pages





    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English