This chapter proposes another nonlinear PLS method, named as locality-preserving partial least squares (LPPLS), which embeds the nonlinear degenerative and structure-preserving properties of LPP into the PLS model. The core of LPPLS is to replace the role of PCA in PLS with LPP. When extracting the principal components of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{t}_i$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{u}_i$$\end{document}, two conditions must satisfy: (1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{t}_i$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{u}_i$$\end{document} retain the most information about the local nonlinear structure of their respective data sets. (2) The correlation between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{t}_i$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{u}_i$$\end{document} is the largest. Finally, a quality-related monitoring strategy is established based on LPPLS.
Locality-Preserving Partial Least Squares Regression
Intelligent Control & Learning Systems
Data-Driven Fault Detection and Reasoning for Industrial Monitoring ; Kapitel : 10 ; 173-188
03.01.2022
16 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Englisch
Incident detection algorithm based on partial least squares regression
Online Contents | 2008
|Incident detection algorithm based on partial least squares regression
Online Contents | 2008
|Implementing partial least squares regression in high dimensional road capacity calibration
TIBKAT | 2022
|A Predictive Model for Emotion Regulation Strategies Using Partial Least Squares Regression
British Library Online Contents | 2011
|