The trajectory tracking control problem of pitch channel dynamics of an autonomous underwater vehicle (AUV) is considered. A linear extended state observer (ESO)-based sliding mode control (SMC) law is proposed under the influence of lumped disturbances. A linear ESO is designed to estimate the lumped disturbances of pitch channel dynamics in real time. A trajectory tracking control law is designed using SMC based on the estimated states. Combining linear ESO with SMC enhances the antidisturbance capability and minimizes the chattering effect of SMC. An experimentally verified pitch channel motion parameters of ODRA-I AUV is used. For robust analysis, the proposed linear ESO-based SMC law is validated under the influence of lumped disturbances. The Lyapunov theory is applied for stability analysis. The efficacy of the proposed control law is proven by comparing it with the benchmark proportional-derivative (PD) control law. The simulation results are demonstrated to support the proposed design.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Pitch Channel Trajectory Tracking Control of an Autonomous Underwater Vehicle


    Additional title:

    Lect. Notes Electrical Eng.



    Conference:

    International Conference on Robotics, Control, Automation and Artificial Intelligence ; 2022 November 24, 2022 - November 26, 2022



    Publication date :

    2023-11-18


    Size :

    12 pages





    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English




    Robust trajectory tracking control for underactuated autonomous underwater vehicles

    Heshmati Alamdari, Shahab / Nikou, Alexandros / Dimarogonas, Dimos V. | BASE | 2019

    Free access

    L1 adaptive pitch control of an autonomous underwater vehicle

    Sarhadi, Pouria / Ranjbar Noei, Abolfazl / Khosravi, Alireza | Emerald Group Publishing | 2014


    Robust Trajectory Tracking Control for Underactuated Autonomous Underwater Vehicles in Uncertain Environments

    Heshmati Alamdari, Shahabodin / Nikou, Alexandros / Dimarogonas, Dimos V. | BASE | 2021

    Free access

    Robust Trajectory Tracking Control for Underactuated Autonomous Underwater Vehicles in Uncertain Environments

    Heshmati Alamdari, Shahabodin / Nikou, Alexandros / Dimarogonas, Dimos V. | BASE | 2020

    Free access