Abstract The prediction of vibration amplitude of wheel squeal noise is investigated using a concise mathematical model which has been validated with results from a rolling contact two disk test rig. The model is used to perform an energy-based analysis to determine a closed form solution to the steady state limit cycle amplitude of creep and vibration oscillations during squealing. The analytical solution is first shown to compare well with a numerical solution using an experimentally tuned creep curve with full nonlinear shape. The predicted squeal level trend is then shown to compare well with that recorded at various crabbing (lateral sliding) velocities for the test rig at different rolling speeds. The analytical solution provides insight into why the sound pressure level of squeal noise increases with crabbing velocity. The results highlight the primary importance of crabbing velocity (and angle of attack) and provide important theoretical insight into the mechanisms governing wheel squeal amplitude.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Prediction of Wheel Squeal Amplitude


    Contributors:


    Publication date :

    2018-01-01


    Size :

    12 pages





    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English




    Prediction of Wheel Squeal Amplitude

    Meehan, Paul A. / Liu, Xiaogang | British Library Conference Proceedings | 2018


    Railway wheel squeal (Squeal of a rotating disk)

    Nakai, M. / Yokoi, M. / Sugiura, M. | Tema Archive | 1989



    Wheel Squeal: Insights from Wayside Condition Monitoring

    Jiang, J. / Hanson, D. / Dowdell, B. | British Library Conference Proceedings | 2018