Abstract A reliable forecasting model for each Water Treatment Plant (WTP) influent characteristics is useful for controlling the plant’s operation. In this paper Auto-Regressive Integrated Moving Average (ARIMA) and Neural Network Auto-Regressive (NNAR) modeling techniques were applied on a WTP’s influent water characteristics time series to make some models for short-term period (to seven days ahead) forecasting. The ARIMA and NNAR models both provided acceptable generalization capability with R2s ranged from 0.44 to 0.91 and 0.45 to 0.92, respectively, for chloride and temperature. Although a more prediction performance was observed for NNAR in comparison with ARIMA for all studied series, the forecasting performance of models was further examined using Time Series Cross-Validation (TSCV) and Diebold-Mariano test. The results showed ARIMA is more accurate than NNAR for forecasting the horizon-daily values for CO2, Cl and Ca time-series. Therefore, despite of the good predictive performance of NNAR, ARIMA may still stands as better alternative for forecasting task of aforementioned series. Thus, as a general rule, not only the predictive performance using R2 statistic but also the forecasting performance of a model using TSCV, are need to be examined and compared for selecting an appropriate forecasting model for WTP’s influent characteristics.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Comparison of ARIMA and NNAR Models for Forecasting Water Treatment Plant’s Influent Characteristics


    Contributors:

    Published in:

    Publication date :

    2018-04-10


    Size :

    13 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Comparison of ARIMA and NNAR Models for Forecasting Water Treatment Plant’s Influent Characteristics

    Maleki, Afshin / Nasseri, Simin / Aminabad, Mehri Solaimany et al. | Springer Verlag | 2018


    Comparison of ARIMA and NNAR Models for Forecasting Water Treatment Plant’s Influent Characteristics

    Maleki, Afshin / Nasseri, Simin / Aminabad, Mehri Solaimany et al. | Online Contents | 2018



    PMs concentration forecasting using ARIMA algorithm

    Badicu, Andreea / Suciu, George / Balanescu, Mihaela et al. | IEEE | 2020