Technological development within the robotics field has made it possible to generate great advances, developing complex bio-inspired systems, such as robots with legs. The same ones have great applicability within search and rescue (SAR) tasks. This type of robot stands out for its extraordinary ability to move within unstructured environments, overcome obstacles and adapt to different terrains. However, quadruped robots have gained space in the SAR-Tasks field over the last few years. Most implementations are limited to collecting information using different sensors, such as cameras, lasers, or microphones. This article seeks to simulate, implement and carry out the teleoperation through Mixed-Reality (M-R) of a quadruped robot equipped with a manipulator with six degrees of freedom, for which the ARTU-R robot (A1 Rescue Tasks Unitree Robot) has been used. One of the main contributions of this work focuses on improving the efficiency in executing tasks of handling and transporting medical equipment in post-disaster situations, using Mixed Reality with the ARTU-R robot and a robotic manipulator. To develop this proof of concept, Matlab has been used as a computational tool for optimizing the workspace of the integrated robot. Simulations have been carried out on Gazebo in reconstructed post-disaster environments to validate the robot’s functionality. At the same time, the effectiveness of the M-R system has been verified with field tests executing medical assistance tasks with the robot. The main results show a 21% increase in the efficiency of performing complex handling tasks using the proposed M-R system compared to conventional interfaces and the efficiency of using quadruped robots with manipulators for medical assistance tasks.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Design and Mixed-Reality Teleoperation of a Quadruped-Manipulator Robot for SAR Tasks


    Additional title:

    Lect. Notes in Networks, Syst.



    Conference:

    Climbing and Walking Robots Conference ; 2022 ; Ponta Delgada, Portugal September 12, 2022 - September 14, 2022



    Publication date :

    2022-08-25


    Size :

    14 pages





    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English




    Design and Mixed-Reality Teleoperation of a Quadruped-Manipulator Robot for SAR Tasks

    Ulloa, Christyan Cruz / Domínguez, David / Barrientos, Antonio et al. | TIBKAT | 2023


    Design of a Hyper-Redundant Robot and Teleoperation Using Mixed Reality for Inspection Tasks

    Martín-Barrio, Andrés / Roldán-Gómez, Juan Jesús / Rodríguez, Iván et al. | BASE | 2020

    Free access

    Exploring Robot Teleoperation in Virtual Reality

    BUKEIKHAN, OMARALI | BASE | 2023

    Free access

    QUADRUPED ROBOT

    HUANG PENGHUI / CHAI JINPENG / CHEN LEI | European Patent Office | 2025

    Free access

    Quadruped robot

    HUANG PENGHUI / CHAI JINPENG / CHEN LEI | European Patent Office | 2024

    Free access