Experimental and numerical investigations have been conducted to analyze the unsteady aerodynamic and flight mechanical behavior of a 53° flying wing configuration representing a generic unmanned combat air vehicle (UCAV). The considered vehicle is named SACCON/DLR-F17 and the here presented results have been collected within an internal project of the German Aerospace Center in collaboration with the NATO task group AVT-201 on “Extended Assessment of Reliable Stability & Control Prediction Methods for NATO Air Vehicles”. Both projects have the aim to conduct studies of an integrated approach to predict the stability and control characteristics for a generic UCAV configuration based on both experimental and numerical investigations. Systematic investigations have been performed to determine the dynamic derivatives for the longitudinal and lateral motion. A comparison between data of experimental wind tunnel investigations and numerical simulations under real flight conditions is given. In wind tunnel tests, performed in the DNW-NWB wind tunnel, the SACCON configuration was studied at a reduced scale of 1:8 and a Mach number of M = 0.15. Forced oscillation motions were performed during these tests to calculate the dynamic derivatives from force and moment data. For the numerical calculations, the same reduced frequencies were applied with the full-scale configuration under real flight conditions using the RANS method DLR-TAU. The planform aerodynamics is governed by complex non-linear flow phenomena due to leading edge vortex flow separation at moderate to high angles of attack. Based on the numerical results, an interpretation of the complex vortex flow is given to understand the unsteady flow phenomena for a variety of roll, pitch, and yawing motions.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Experimental and numerical investigations of unsteady aerodynamic derivatives for a generic lambda wing UCAV configuration


    Additional title:

    CEAS Aeronaut J


    Contributors:

    Published in:

    CEAS Aeronautical Journal ; 11 , 2 ; 475-485


    Publication date :

    2020-06-01


    Size :

    11 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English





    Validation of Unsteady Aerodynamic Models of a Generic UCAV Configuration (AIAA 2014-2265)

    Ghoreyshi, M. / Young, M. / Jirasek, A. et al. | British Library Conference Proceedings | 2014


    Conceptual Design and Aerodynamic Analyses of a Generic UCAV Configuration

    Liersch, Carsten M. / Huber, Kerstin C. | AIAA | 2014


    Validation of Unsteady Aerodynamic Models of a Generic UCAV Using Overset Grids

    Ghoreyshi, Mehdi / Jirasek, Adam / Cummings, Russell M. et al. | AIAA | 2014


    Aerodynamic Optimization of an UCAV Configuration

    Hitzel, S.M. / Nardin, L. / Sorensen, K. et al. | Tema Archive | 2009