Experimental and numerical investigations have been conducted to analyze the unsteady aerodynamic and flight mechanical behavior of a 53° flying wing configuration representing a generic unmanned combat air vehicle (UCAV). The considered vehicle is named SACCON/DLR-F17 and the here presented results have been collected within an internal project of the German Aerospace Center in collaboration with the NATO task group AVT-201 on “Extended Assessment of Reliable Stability & Control Prediction Methods for NATO Air Vehicles”. Both projects have the aim to conduct studies of an integrated approach to predict the stability and control characteristics for a generic UCAV configuration based on both experimental and numerical investigations. Systematic investigations have been performed to determine the dynamic derivatives for the longitudinal and lateral motion. A comparison between data of experimental wind tunnel investigations and numerical simulations under real flight conditions is given. In wind tunnel tests, performed in the DNW-NWB wind tunnel, the SACCON configuration was studied at a reduced scale of 1:8 and a Mach number of M = 0.15. Forced oscillation motions were performed during these tests to calculate the dynamic derivatives from force and moment data. For the numerical calculations, the same reduced frequencies were applied with the full-scale configuration under real flight conditions using the RANS method DLR-TAU. The planform aerodynamics is governed by complex non-linear flow phenomena due to leading edge vortex flow separation at moderate to high angles of attack. Based on the numerical results, an interpretation of the complex vortex flow is given to understand the unsteady flow phenomena for a variety of roll, pitch, and yawing motions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Experimental and numerical investigations of unsteady aerodynamic derivatives for a generic lambda wing UCAV configuration


    Weitere Titelangaben:

    CEAS Aeronaut J


    Beteiligte:
    Zimper, Dirk (Autor:in) / Huber, Kerstin C. (Autor:in)

    Erschienen in:

    CEAS Aeronautical Journal ; 11 , 2 ; 475-485


    Erscheinungsdatum :

    01.06.2020


    Format / Umfang :

    11 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Validation of Unsteady Aerodynamic Models of a Generic UCAV Configuration (AIAA 2014-2265)

    Ghoreyshi, M. / Young, M. / Jirasek, A. et al. | British Library Conference Proceedings | 2014


    Conceptual Design and Aerodynamic Analyses of a Generic UCAV Configuration

    Liersch, Carsten M. / Huber, Kerstin C. | AIAA | 2014


    Validation of Unsteady Aerodynamic Models of a Generic UCAV Using Overset Grids

    Ghoreyshi, Mehdi / Jirasek, Adam / Cummings, Russell M. et al. | AIAA | 2014


    Aerodynamic Optimization of an UCAV Configuration

    Hitzel, S.M. / Nardin, L. / Sorensen, K. et al. | Tema Archiv | 2009