Abstract Autonomous robots are not very good at being autonomous. They work well in structured environments, but fail quickly in the real world facing uncertainty and dynamically changing conditions. In this chapter, we describe robot learning approaches that help to elevate robot autonomy to the next level, the so-called ‘persistent autonomy’. For a robot to be ‘persistently autonomous’ means to be able to perform missions over extended time periods (e.g. days or months) in dynamic, uncertain environments without need for human assistance. In particular, persistent autonomy is extremely important for robots in difficult-to-reach environments such as underwater, rescue, and space robotics. There are many facets of persistent autonomy, such as: coping with uncertainty, reacting to changing conditions, disturbance rejection, fault tolerance, energy efficiency and so on. This chapter presents a collection of robot learning approaches that address many of these facets. Experiments with robot manipulators and autonomous underwater vehicles demonstrate the usefulness of these learning approaches in real world scenarios.
Robot Learning for Persistent Autonomy
1st ed. 2015
2015-01-01
26 pages
Article/Chapter (Book)
Electronic Resource
English
British Library Conference Proceedings | 1991
|