This paper deals with the optimization of locomotion performances of vehicle used for planetary exploration. The design of an innovative reconfigurable mini-rover is presented. Then, a control process that optimize the stability and the global traction performances is developed. A method to identify in-situ the wheel-ground mechanical contact properties is proposed and used to determine an optimal traction torque. Results on experiments and simulations show that the rover stability is significantly enhanced by using the proposed control method.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Kinematic analysis and stability optimization of a reconfigurable legged-wheeled mini-rover


    Contributors:

    Conference:

    Unmanned Ground Vehicle Technology IV ; 2002 ; Orlando,FL,United States


    Published in:

    Publication date :

    2002-07-17





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English