In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.
Machine learning based Intelligent cognitive network using fog computing
Sensors and Systems for Space Applications X ; 2017 ; Anaheim,California,United States
Proc. SPIE ; 10196
2017-05-05
Conference paper
Electronic Resource
English
Elevator intelligent management system based on edge computing and computing network integration
European Patent Office | 2024
|Intelligent Traffic Management using Machine Learning
IEEE | 2025
|