The paper proposes an approach based on Taguchi’s method to predict the optimum process parameters and forecasts the outputs at these parameters using neural networks. The predicted data from Taguchi’s Design of Experiments (DOE) is quite useful in obtaining optimised output parameters, using some regression models. In multiple input (MI) systems, with no cost function defined explicitly in terms of system variables, Taguchi’s solution provides best accurate alternative. Neural networks on the other hand provide the output corresponding to the optimum process parameters obtained in Taguchi method. A case study demonstrates the approach. Results are presented in the form of graphs and tables.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Optimisation and Output Forecasting Using Taguchi-Neural Network Approach


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    SAE 2006 World Congress & Exhibition ; 2006



    Publication date :

    2006-04-03




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    2006-01-1618 Optimisation and Output Forecasting Using Taguchi-Neural Network Approach

    Dukkipati, R. V. / Srinivas, J. / Mouli, K. V. V. C. et al. | British Library Conference Proceedings | 2006


    Optimisation and output forecasting using Tachuchi-neural network approach

    Dukkipati,R.V. / Srinivas,J. / Chandra Mouli,K.V. et al. | Automotive engineering | 2006


    Optimisation of Injection Moulding Process Parameter Using Taguchi and Desirability Function

    Panneerselvam, Vivekanandan / Turan, Faiz Mohd | Springer Verlag | 2020


    Optimisation of Injection Moulding Process Parameter Using Taguchi and Desirability Function

    Panneerselvam, Vivekanandan / Turan, Faiz Mohd | TIBKAT | 2021


    Optimisation of yaw rejection control for armoured vehicle using Taguchi method

    Kadir,Z.A. / Zamzuri,H. / Hudha,K. et al. | Automotive engineering | 2016