The paper proposes an approach based on Taguchi’s method to predict the optimum process parameters and forecasts the outputs at these parameters using neural networks. The predicted data from Taguchi’s Design of Experiments (DOE) is quite useful in obtaining optimised output parameters, using some regression models. In multiple input (MI) systems, with no cost function defined explicitly in terms of system variables, Taguchi’s solution provides best accurate alternative. Neural networks on the other hand provide the output corresponding to the optimum process parameters obtained in Taguchi method. A case study demonstrates the approach. Results are presented in the form of graphs and tables.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimisation and Output Forecasting Using Taguchi-Neural Network Approach


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    SAE 2006 World Congress & Exhibition ; 2006



    Erscheinungsdatum :

    03.04.2006




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch


    Schlagwörter :


    2006-01-1618 Optimisation and Output Forecasting Using Taguchi-Neural Network Approach

    Dukkipati, R. V. / Srinivas, J. / Mouli, K. V. V. C. et al. | British Library Conference Proceedings | 2006


    Optimisation and output forecasting using Tachuchi-neural network approach

    Dukkipati,R.V. / Srinivas,J. / Chandra Mouli,K.V. et al. | Kraftfahrwesen | 2006


    Optimisation of Injection Moulding Process Parameter Using Taguchi and Desirability Function

    Panneerselvam, Vivekanandan / Turan, Faiz Mohd | Springer Verlag | 2020


    Optimisation of Injection Moulding Process Parameter Using Taguchi and Desirability Function

    Panneerselvam, Vivekanandan / Turan, Faiz Mohd | TIBKAT | 2021


    Optimisation of yaw rejection control for armoured vehicle using Taguchi method

    Kadir,Z.A. / Zamzuri,H. / Hudha,K. et al. | Kraftfahrwesen | 2016