Some SI (spark-ignition) engines fueled with gasoline for industrial machineries are designed based on the conventional diesel engine in consideration of the compatibility with installation. Such diesel engine-based SI engines secure a combustion chamber by a piston bowl instead of a pent-roof combustion chamber widely applied for SI engines for automobiles.In the development of SI engines, because knocking deteriorates the power output and the thermal efficiency, it is essential to clarify causes of knocking and predict knocking events. However, there has been little research on knocking in diesel engine-based SI engines. The purpose of this study is to elucidate knocking phenomena in a gasoline engine with a re-entrant piston bowl and swirl flow numerically and experimentally. In-cylinder visualization and pressure analysis of knock onset cycles have been experimentally performed. Locations of autoignition have been predicted by 3D-CFD analysis with detailed chemical reactions. The prediction accuracy of the location of autoignition has been examined by comparing with experimental results. Initial and boundary conditions for 3D-CFD are obtained by TPA (Three Pressure Analysis), which is a 1D engine cycle simulation using measured intake/exhaust and in-cylinder pressures as the input data. Locations and timing of autoignition have been observed through an endoscope attached to the cylinder head. The visualization area through the endscope is determined based on the location of autoignition predicted by 3D-CFD analysis. The in-cylinder pressure is also measured simultaneously, and the maximum amplitude of the pressure oscillations after applying a high-pass filter to the in-cylinder pressure is used as knock intensity (KI) to determine knock onset cycles. From results of the in-cylinder pressure measurements and analysis by TPA, the relationships between in-cylinder conditions and KI are analyzed. The comparison between visualized and calculated location of autoignition have been shown good agreement in the case that both the maximum and the low engine speed conditions.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Numerical and Experimental Analysis of Abnormal Combustion in a SI Gasoline Engine with a Re-Entrant Piston Bowl and Swirl Flow


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    The 26th Small Powertrains and Energy Systems Technology Conference ; 2022



    Publication date :

    2022-01-09




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Numerical Estimation of Asymmetry of In-Cylinder Flow in a Light Duty Direct Injection Engine with Re-Entrant Piston Bowl

    Ibron, Christian / Jangi, Mehdi / Lucchini, Tommaso et al. | SAE Technical Papers | 2017



    Numerical Analysis on the Effect of Piston Bowl Geometry in Gasoline-Diesel Dual-Fuel Combustion

    Kim, Gyujin / Choi, Hoimyung / Kang, Jaegu et al. | SAE Technical Papers | 2019



    Effect of Piston Bowl Shape, Swirl Ratio and Spray Angle on Combustion and Emission in Off Road Diesel Engine

    Jadhao, Mangeshkumar / Quazi, Muzaffar Ali / Singh, Shakti Kumar | SAE Technical Papers | 2015