Flow field asymmetry can lead to an asymmetric mixture preparation in Diesel engines. To understand the evolution of this asymmetry, it is necessary to characterize the in-cylinder flow over the full compression stroke. Moreover, since bowl-in-piston cylinder geometries can substantially impact the in-cylinder flow, characterization of these flows requires the use of geometrically correct pistons. In this work, the flow has been visualized via a transparent piston top with a realistic bowl geometry, which causes severe experimental difficulties due to the spatial and temporal variation of the optical distortion. An advanced optical distortion correction method is described to allow reliable particle image velocimetry (PIV) measurements through the full compression stroke.Based on the ensemble-averaged velocity results, flow asymmetry characterized by the swirl center offset and the associated tilting of the vortex axis is quantified. The observed vertical tilting of swirl center axis is similar for tested swirl ratios (2.2 and 3.5), indicating that the details of the intake flows are not of primary importance to the late-compression mean flow asymmetry. Instead, the geometry of the piston pip likely impacts the flow asymmetry.The PIV results also confirm the numerically simulated flow asymmetry in the early and late compression stroke: at BDC, the swirl center is located closer to the exhaust valves for swirl-planes farther away from the fire deck; near TDC, the swirl center is located closer to the intake valves for swirl-planes farther away from the fire deck. It is evident from experimentally determined velocity fields that the transition between these two asymmetries has a different path for various swirl ratios, suggesting the influence of intake port flows.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Characterization of Flow Asymmetry During the Compression Stroke Using Swirl-Plane PIV in a Light-Duty Optical Diesel Engine with the Re-entrant Piston Bowl Geometry


    Additional title:

    Sae Int. J. Engines


    Contributors:

    Conference:

    SAE 2015 World Congress & Exhibition ; 2015


    Published in:

    Publication date :

    2015-04-14


    Size :

    19 pages




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Numerical Estimation of Asymmetry of In-Cylinder Flow in a Light Duty Direct Injection Engine with Re-Entrant Piston Bowl

    Ibron, Christian / Jangi, Mehdi / Lucchini, Tommaso et al. | SAE Technical Papers | 2017


    Effect of Piston Bowl Shape and Swirl Ratio on Engine Heat Transfer in a Light-Duty Diesel Engine

    Sunden, Bengt / Persson, Hakan / Fridriksson, Helgi Skuli et al. | SAE Technical Papers | 2014


    Piston Bowl Geometry Effects on Combustion Development in a High-Speed Light-Duty Diesel Engine

    Kurtz, Eric / Perini, Federico / Zha, Kan et al. | SAE Technical Papers | 2019


    Optimization of Piston Bowl Geometry for a Low Emission Heavy-Duty Diesel Engine

    Guo, Zexian / He, Xin / Pei, Yuanjiang et al. | British Library Conference Proceedings | 2020


    Optimization of Piston Bowl Geometry for a Low Emission Heavy-Duty Diesel Engine

    Wang, Boyuan / Chang, Chen-Teng / Wang, Peng et al. | SAE Technical Papers | 2020