Reactivity-controlled compression ignition (RCCI) has been shown to be capable of providing improved engine efficiencies coupled with the benefit of low emissions via in-cylinder fuel blending. Much of the previous body of work has studied the benefits of RCCI operation using high injection pressures (e.g., 500 bar or greater) with common rail injection (CRI) hardware. However, low-pressure fueling technology is capable of providing significant cost savings. Due to the broad market adoption of gasoline direct injection (GDI) fueling systems, a market-type prototype GDI injector was selected for this study. Single-cylinder light-duty engine experiments were undertaken to examine the performance and emissions characteristics of the RCCI combustion strategy with low-pressure GDI technology and compared against high injection pressure RCCI operation. Gasoline and diesel were used as the low-reactivity and high-reactivity fuels, respectively. GDI injection pressures range from 150 to 200 bar, while the CRI pressures range from 250 to 500 bar. Start of injection (SOI) timings ranged from -35° aTDC and -115° aTDC. The experimental results show comparable engine performance and emissions output, but with slight reductions in overall combustion efficiency when using low-pressure fueling with the stock re-entrant piston. CFD simulations were also performed to aid in visualization of the in-cylinder fuel distributions, which are controlling factors for RCCI combustion. By utilizing an optimized RCCI piston geometry, equivalent RCCI combustion performance can be achieved under low-pressure fueling, at moderate and high loads. The optimized geometry also allows for significant increases in thermal efficiency, with peak efficiencies over 47% observed.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Use of Low-Pressure Direct-Injection for Reactivity Controlled Compression Ignition (RCCI) Light-Duty Engine Operation


    Additional title:

    Sae Int. J. Engines


    Contributors:

    Conference:

    SAE 2013 World Congress & Exhibition ; 2013


    Published in:

    Publication date :

    2013-04-08


    Size :

    16 pages




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Particulate Matter Characterization of Reactivity Controlled Compression Ignition (RCCI) on a Light Duty Engine

    Dempsey, Adam / Parks, James / Storey, John et al. | SAE Technical Papers | 2014


    Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light- and Heavy-Duty Engines

    Splitter, Derek / Kaddatz, John / Hanson, Reed et al. | SAE Technical Papers | 2011


    Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light- and Heavy-Duty Engines

    Kokjohn, S. / Hanson, R. / Splitter, D. et al. | British Library Conference Proceedings | 2011



    Reactivity Controlled Compression Ignition (RCCI) Heavy-Duty Engine Operation at Mid-and High-Loads with Conventional and Alternative Fuels

    Splitter, D. / Hanson, R. / Kokjohn, S. et al. | British Library Conference Proceedings | 2011