Reactivity-controlled compression ignition (RCCI) has been shown to be capable of providing improved engine efficiencies coupled with the benefit of low emissions via in-cylinder fuel blending. Much of the previous body of work has studied the benefits of RCCI operation using high injection pressures (e.g., 500 bar or greater) with common rail injection (CRI) hardware. However, low-pressure fueling technology is capable of providing significant cost savings. Due to the broad market adoption of gasoline direct injection (GDI) fueling systems, a market-type prototype GDI injector was selected for this study. Single-cylinder light-duty engine experiments were undertaken to examine the performance and emissions characteristics of the RCCI combustion strategy with low-pressure GDI technology and compared against high injection pressure RCCI operation. Gasoline and diesel were used as the low-reactivity and high-reactivity fuels, respectively. GDI injection pressures range from 150 to 200 bar, while the CRI pressures range from 250 to 500 bar. Start of injection (SOI) timings ranged from -35° aTDC and -115° aTDC. The experimental results show comparable engine performance and emissions output, but with slight reductions in overall combustion efficiency when using low-pressure fueling with the stock re-entrant piston. CFD simulations were also performed to aid in visualization of the in-cylinder fuel distributions, which are controlling factors for RCCI combustion. By utilizing an optimized RCCI piston geometry, equivalent RCCI combustion performance can be achieved under low-pressure fueling, at moderate and high loads. The optimized geometry also allows for significant increases in thermal efficiency, with peak efficiencies over 47% observed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Use of Low-Pressure Direct-Injection for Reactivity Controlled Compression Ignition (RCCI) Light-Duty Engine Operation


    Weitere Titelangaben:

    Sae Int. J. Engines


    Beteiligte:

    Kongress:

    SAE 2013 World Congress & Exhibition ; 2013


    Erschienen in:

    Erscheinungsdatum :

    08.04.2013


    Format / Umfang :

    16 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Use of Low-Pressure Direct-Injection for Reactivity Controlled Compression Ignition (RCCI) Light-Duty Engine Operation

    Walker, N.R. / Dempsey, A.B. / Andrie, M.J. et al. | British Library Conference Proceedings | 2013


    Particulate Matter Characterization of Reactivity Controlled Compression Ignition (RCCI) on a Light Duty Engine

    Dempsey, A. / Curran, S. / Storey, J. et al. | British Library Conference Proceedings | 2014


    Particulate Matter Characterization of Reactivity Controlled Compression Ignition (RCCI) on a Light Duty Engine

    Dempsey, Adam / Parks, James / Storey, John et al. | SAE Technical Papers | 2014


    Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light- and Heavy-Duty Engines

    Splitter, Derek / Kaddatz, John / Hanson, Reed et al. | SAE Technical Papers | 2011


    Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light- and Heavy-Duty Engines

    Kokjohn, S. / Hanson, R. / Splitter, D. et al. | British Library Conference Proceedings | 2011