The longitudinal dynamics control is an essential task of vehicle dynamics control. In present, it is usually applied by adjusting the slip ratio of driving wheels to achieve satisfactory performances both in stability and accelerating ability. In order to improve its performances, the coordination of different subsystems such as engine, transmission and braking system has to be considered. In addition, the proposed algorithms usually adopt the threshold methods based on less road condition information for simpleness and quick response, which cannot achieve optimal performance on various road conditions.In this paper, an integrated longitudinal vehicle dynamics control algorithm with tire/road friction estimation was proposed. First, a road identification algorithm was designed to estimate tire forces of driving wheels and the friction coefficient by the method of Kalman Filter and Recursive Least Squares (RLS). Then, a rule based integrated control algorithm which coordinate the engine torque control, brake pressure control and transmission shifting control was built to improve the vehicle driving performance.During the longitudinal dynamics control procedure, the transmission shifting control algorithm firstly decided whether the vehicle starting up at the 1st or the 2nd gear based on the road condition. Then, the engine torque control algorithm was applied to adjust the slip ratio of driving wheels. Its process was divided into three phases. In each phase, different control rules with integration of engine torque and brake torque were set by the combined feed forward and feedback methods to meet with requirements of accuracy, rapidity and stability. The brake pressure was determined by method of sliding mode control (SMC) for its rapid adjustment characteristic, in the meanwhile, it was also an important component to be considered in engine torque feedback control.Finally, the algorithm was verified by using Matlab/Simulink and CarSim co-simulation, the results show that the proposed control algorithm could regulate slip ratios of driving wheels fast and accurately, and the vehicle driving performance could be improved effectively.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Integrated Longitudinal Vehicle Dynamics Control with Tire/Road Friction Estimation


    Additional title:

    Sae International Journal of Passenger Cars. Mechanical Systems
    Sae Int. J. Passeng. Cars - Mech. Syst


    Contributors:
    Zhu, Bing (author) / Zhao, Jian (author) / Zhang, Jin (author)

    Conference:

    SAE 2015 World Congress & Exhibition ; 2015



    Publication date :

    2015-04-14


    Size :

    8 pages




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Integrated Longitudinal Vehicle Dynamics Control with Tire/Road Friction Estimation

    Zhao, Jian / Zhang, Jin / Zhu, Bing | British Library Conference Proceedings | 2015


    Integrated longitudinal vehicle dynamics control with tire/road friction estimation

    Zhao,J. / Zhang,J. / Zhu,B. et al. | Automotive engineering | 2015


    An Empirical Model For Longitudinal Tire-Road Friction Estimation

    Bian, M. / Li, K. / Feng, N. et al. | British Library Conference Proceedings | 2004



    An empirical model for longitudinal tire-road friction estimation

    Bian,M. / Li,K. / Feng,N. et al. | Automotive engineering | 2004