The assessment of durability is of vital importance to the automotive industry in general and for body-on-frame vehicle manufacturers in particular, as it is one of the most important physical attributes for the customer. Therefore, durability needs to be highlighted in the development process from the beginning of the design and development phase. This paper discusses the use of full vehicle simulation techniques developed in ADAMS/Car for the prediction of durability loads of a pickup truck.The frame, cab and box are modeled as flexible structures. The cab rests on elastomer mounts, whose stiffness and damping characteristics are very sensitive to the excitation amplitude and preload conditions. To improve simulation, a practical approach that takes into account the body mountsâ non-linear amplitude-dependent behavior has been used for this survey. A comparison of experimental and model simulation results for one of the most severe proving ground events was made in terms of time histories, power spectral densities, level crossing counting and relative pseudo damage.The validated full-vehicle model was used for detailed parameter studies and tolerance analyses in a very early phase of the development to significantly improve product quality and development process. The accuracy of the simulation, including this fine level of detail can be used to justify a reduction of on-road durability tests and prototypes. To further improve the simulation, following studies will focus on the model parameters for the flexible car body structure and hydro cab mounts.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Durability Loads Prediction of Body-on-Frame Vehicles using Full Vehicle Simulation




    Publication date :

    2017


    Size :

    12 pages




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English



    Chassis Durability Loads Prediction Using Minimal Measured Channels

    Yang, X. / Medepalli, S. / Canadian Society for Mechanical Engineering | British Library Conference Proceedings | 2001


    A Hybrid Road Loads Prediction Method with Full Vehicle Dynamic Simulation

    Dhir, A. K. / Kao, B. G. / Perumalswami, P. R. | SAE Technical Papers | 1997


    A Hybrid Road Loads Prediction Method with Full Vehicle Dynamic Simulation

    Kao, B. G. / Perumalswami, P. R. / Dhir, A. K. et al. | British Library Conference Proceedings | 1997


    Finite Element Modeling of the Frame for Body-On-Frame Vehicles: Part II - Full Vehicle Crash

    Cheng, James / Laya, Jeff / Craig, Ryan et al. | SAE Technical Papers | 2004


    A hybrid road loads prediction method with full vehicle dynamic simulation

    Kao,B.G. / Perumalswami,P.R. / Dhir,A.K. et al. | Automotive engineering | 1997