Regenerative braking is present in almost all electric vehicle models and as the demand for electric vehicles grows, the types of electric vehicles grow as well. Regenerative braking allows for an electric vehicle to convert a vehicle's kinetic energy into electrical potential energy by utilizing the electric motors to slow the vehicle. This potential energy is then returned to the vehicle’s battery allowing for the vehicle’s range to be extended. The vehicles tested during the study were as follows: 2022 Rivian R1T, 2022 Tesla Model Y, 2022 Hyundai Ioniq 5, 2020 Tesla Model 3, 2021 Volkswagen ID.4, and 2021 Ford Mustang Mach-E. Although regenerative braking slows the vehicle, not all levels of regenerative braking bring the vehicle to a complete stop. The study showed that there are typically two types of regenerative braking. The first, commonly referred to as one-pedal driving, will bring a vehicle to a complete stop without the application of the brake pedal. The other slows the vehicle to a pre-determined speed before the regenerative braking is no longer applied. This type of regenerative braking allowed the vehicle to move forward, or coast, after regenerative braking was no longer applied. This study sought to determine and compare the average deceleration from regenerative braking, without applying the brake pedal, of each vehicle at all levels of regeneration. Tests were conducted at speeds of approximately 15 mph, 30 mph, 45 mph, and 60 mph. As electric vehicles introduced the ability to change the vehicles performance and driving characteristics through software updates, it may be necessary to complete testing periodically.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Quantifying the Deceleration of Various Electric Vehicles Utilizing Regenerative Braking


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    WCX SAE World Congress Experience ; 2023



    Publication date :

    2023-04-11




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Quantifying the Deceleration of Various Electric Vehicles Utilizing Regenerative Braking

    Vigil, Cole Mackenzie / Kaayal, Omar / Szepelak, Alexander | British Library Conference Proceedings | 2023


    Energy recapture through deceleration – regenerative braking in electric vehicles from a user perspective

    Cocron, Peter / Bühler, Franziska / Franke, Thomas et al. | Tema Archive | 2013


    Regenerative braking for electric vehicles

    Wyczalek,F.A. / Wang,T.C. / FW Lilly,US et al. | Automotive engineering | 1992


    Regenerative braking for electric vehicles

    Wyczalek, F.A. / Wang, T.C. | Tema Archive | 1992


    Regenerative braking of electric vehicles

    Hellmund, R.E. | Engineering Index Backfile | 1917