This article describes the design and implementation of a fuzzy controller developed for improving car stability by controlling car side-slip angle. The strategy has been to estimate the slip angle by a trained neural network and to determine an appropriate force arrangement on the wheels to produce the necessary yaw moment to limit car side slip control. A seven degrees of freedom car model including nonlinear tire behavior is used in design stage. The results were then validated on a full car model in ADAMS having 156 DOF and including elements nonlinearities and flexibilities. The simulations show the capability of the designed controller in improving stability of the car in sever maneuvers.
Vehicle Stability Improvement Using Fuzzy Controller and Neural-Network Slip Angle Observer
Sae Technical Papers
International Body Engineering Conference & Exposition ; 2003
2003-10-27
Conference paper
English
British Library Conference Proceedings | 2003
|VEHICLE BODY SIDE SLIP ANGLE OBSERVER
British Library Conference Proceedings | 2004
|Nonlinear body slip angle observer for electric vehicle stability control
Tema Archive | 2007
|Vehicle Body Slip Angle Estimation Using an Adaptive Observer
British Library Conference Proceedings | 1998
|Vehicle body slip angle estimaton using an adaptive observer
Tema Archive | 1998
|