In this paper, a method for including damping of acoustic energy in regions of strong turbulence is derived for a linearized Navier-Stokes method in the frequency domain. The proposed method is validated and analyzed in 2D only, although the formulation is fully presented in 3D. The result is applied in a study of the linear interaction between the acoustic and the hydrodynamic held in a 2D T-junction, subject to grazing flow at Mach 0.1. Part of the acoustic energy at the upstream edge of the junction is shed as harmonically oscillating disturbances, which are conveyed across the shear layer over the junction, where they interact with the acoustic field. As the acoustic waves travel in regions of strong shear, there is a need to include the interaction between the background turbulence and the acoustic field. For this purpose, the oscillation of the background turbulence Reynolds stress, due to the acoustic Field, is modeled using an eddy Newtonian model assumption. The time averaged flow is first solved for using RANS along with a k-epsilon turbulence model. The spatially varying turbulent eddy viscosity is then added to the spatially invariant kinematic viscosity in the acoustic set of equations. The response of the 2D T-junction to an incident acoustic field is analyzed via a plane wave scattering matrix model, and the result is compared to experimental data for a T-junction of rectangular ducts. A strong improvement in the agreement between calculation and experimental data is found when the modification proposed in this paper is implemented. Discrepancies remaining are likely due to inaccuracies in the selected turbulence model, which is known to produce large errors e.g. for flows with significant rotation, which the grazing flow across the T-junction certainly is A natural next step is therefore to test the proposed methodology together with more sophisticated turbulence models.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    A frequency domain linearized Navier–Stokes method including acoustic damping by eddy viscosity using RANS




    Publication date :

    2015




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    33.12 Akustik / 50.36 Technische Akustik / 53.79 Elektroakustik, Tonstudiotechnik / 50.32 Dynamik, Schwingungslehre / 58.56 Lärmschutz, Erschütterungsdämpfung
    Local classification TIB:    275/3425



    A Linearized Navier-Stokes Method Including Turbulence Damping

    Holmberg, Andreas / Kierkegaard, Axel / Weng, Chenyang | AIAA | 2013


    Using the Linearized Navier-Stokes Equations to Model Acoustic Liners

    Herring Jensen, Mads Jakob / Svensson, Elin / Shaposhnikov, Kirill | AIAA | 2018


    Modelling of Acoustic Resonators Using the Linearized Navier Stokes Equations

    Du, Lin / Knutsson, Magnus / Abom, Mats et al. | SAE Technical Papers | 2016


    Modelling of Acoustic Resonators Using the Linearized Navier Stokes Equations

    Du, Lin / Abom, Mats / Karlsson, Mikael et al. | British Library Conference Proceedings | 2016