To tune the acoustics of intake systems resonators are often used. A problem with this solution is that the performance of these resonators can be affected a lot by flow. First, for low frequencies (Strouhal-numbers) the acoustic induced vorticity across a resonator inlet opening will create damping, which can reduce the efficiency. Secondly, the vorticity across the opening can also change the end-correction (added mass) for the resonator, which can modify the resonance frequency. However, the largest problem that can occur is whistling. This happens since the vortex-sound interaction across a resonator opening for certain Strouhal-numbers will amplify incoming sound waves. A whistling can then be created if this amplified sound forms a feedback loop, e.g., via reflections from system boundaries or the resonator. To analyse this kind of problem it is necessary to have a model that allows for both sound and vorticity and their interaction. This means using a convected wave equation type of model is not sufficient. A better approach is to apply the linearized Navier Stokes equations, which will give a full model of the vortex-sound effects. In this paper an effort to apply this approach on a set of generic resonators is described. Besides the numerical results comparisons with experiments are also presented.
Modelling of Acoustic Resonators Using the Linearized Navier Stokes Equations
Sae Technical Papers
9th International Styrian Noise, Vibration & Harshness Congress: The European Automotive Noise Conference ; 2016
2016-06-15
Conference paper
English
Modelling of Acoustic Resonators Using the Linearized Navier Stokes Equations
British Library Conference Proceedings | 2016
|