A document discusses an architecture of a spaceborne laser communication system that provides for a simplified control subsystem that stabilizes the line of sight in a desired direction. Heretofore, a typical design for a spaceborne laser communication system has called for a high-bandwidth control loop, a steering mirror and associated optics, and a fast steering-mirror actuator to stabilize the line of sight in the presence of vibrations. In the present architecture, the need for this fast steering-mirror subsystem is eliminated by mounting the laser-communication optics on a disturbance-free platform (DFP) that suppresses coupling of vibrations to the optics by 60 dB. Taking advantage of microgravitation, in the DFP, the optical assembly is free-flying relative to the rest of the spacecraft, and a low-spring-constant pointing control subsystem exerts small forces to regulate the position and orientation of the optics via voice coils. All steering is effected via the DFP, which can be controlled in all six degrees of freedom relative to the spacecraft. A second control loop, closed around a position sensor and the spacecraft attitude-control system, moves the spacecraft as needed to prevent mechanical contact with the optical assembly.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Simplified Optics and Controls for Laser Communications


    Contributors:


    Publication date :

    2006-07-01


    Type of media :

    Miscellaneous


    Type of material :

    No indication


    Language :

    English





    Fiber optics for controls

    Seng, Gary T. | NTRS | 1990


    Transmission gear developments and possibilities of simplified controls

    Shorter, L.J. | Engineering Index Backfile | 1938


    Modeling Optics For Analyses Of Dynamics And Controls

    Breckenridge, William C. / Redding, David C. | NTRS | 1992


    Simplified Laser Tuning

    Mcdermid, I. S. / Pacala, T. J. | NTRS | 1984