An experimental investigation designed to study the development of shear layers in a two-dimensional single-nozzle ejector has been completed. In this study, combinations of air/air, argon/air, helium/air, and air/helium were used as the supersonic primary and subsonic secondary, respectively. Mixing of the gases occurred in a constant-area tube 39.1 mm high by 25.4 mm wide, where the inlet static pressure was maintained at 35 kPa. The cases studied resulted in convective Mach numbers between 0.058 and 1.64, density ratios between 0.102 and 3.49, and velocity ratios between 0.065 and 0.811. The resulting data shows the differences in the shear-layer development for the various combinations of independent variables utilized in the investigation. The normalized growth-rates in the near-field were found to be similar to two-dimensional mixing layers. These results have enhanced the ability to analyze and design ejector systems as well as providing a better understanding of the physics.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Initial development of the two-dimensional ejector shear layer - Experimental results


    Contributors:

    Conference:

    AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference and Exhibit ; 1993 ; Monterey, CA, United States


    Publication date :

    1993-06-01


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English