Miniature, 50 kg class, strategic satellites intended for extended deployment in space require an on-board propulsion capability to perform needed attitude control adjustments and drag compensation maneuvers. Even on such very small spacecraft, these orbit maintenance functions can be significant and result in a substantial propellant mass requirement. Development of advanced propulsion technology could reduce this propellant mass significantly, and thereby maximize the payload capability of these spacecraft. In addition, spacecraft maneuverability could be enhanced and/or multi-year mission lifetimes realized. These benefits cut spacecraft replacement costs, and reduce services needed to maintain the launch vehicles. For SDIO brilliant pebble spacecraft, a miniaturized hydrazine propulsion system provides both boost and divert thrust control. This type of propulsion system is highly integrated and is capable of delivering large thrust levels for short time periods. However, orbit maintenance functions such as drag make-up require only very small velocity corrections. Using the boost and/or divert thrusters for these small corrections exposes this highly integrated propulsion system to continuous on/off cycling and thereby increases the risk of system failure. Furthermore, since drag compensation velocity corrections would be orders of magnitude less than these thrusters were designed to deliver, their effective specific impulse would be expected to be lower when operated at very short pulse lengths. The net result of these effects would be a significant depletion of the on-board hydrazine propellant supply throughout the mission, and a reduced propulsion system reliability, both of which would degrade the interceptors usefulness. In addition to SDIO brilliant pebble spacecraft, comparably small spacecraft can be anticipated for other future strategic defense applications such as surveillance and communication. For such spacecraft, high capability and reliability, minimal detectability and low cost are requirements. All these miniature spacecraft share a common characteristic: because of their on-board electronic equipment they have, by design, solar order 50-100 W. In a relative sense, such spacecraft are power rich when compared to other larger spacecraft. This power rich situation is offset by very tight mass budgets, which make reductions in propellant mass requirements a key issue in meeting overall spacecraft minimum mass goals. In principle, power rich and propellant poor brilliant pebbles class spacecraft can benefit from using high specific impulse electric propulsion to reduce chemical propellant mass requirements. However, at power levels of order 50 W, arcjets cannot be made to function, ion thrusters are too complex and heavy and resistojets have too low a specific impulse. Recognizing these capability limitations in existing electric propulsion technology, the SDIO/IST sponsored the Phase I SBIR Micro Electric Propulsion (MEP) thruster study described in this report. The objective of this study was to examine the feasibility of developing a very simple, low mass and small volume, electric thruster for operation on hydrazine at less than 100 W of input power. The feasibility of developing such a MEP thruster was successfully demonstrated by EPL by the discovery of a novel plasma acceleration process. The sections in this report summarize the approach, test results and major accomplishments of this proof-of-concept ...


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite