Automated ground maintenance is a necessity for multi-UAV systems. Without such automation, these systems will become more of a burden than a benefit as human operators struggle to contend with maintenance operations for large numbers of vehicles. By creating autonomous UAV systems that can take care of themselves, human operators will be free to concentrate on higher level tasks such as using the information gathered by the system to direct future mission activities. This thesis describes the design, testing, construction, and usage of the first fully autonomous recharge system for small, battery-powered UAVs. This system was used to perform the first fully-autonomous quadrotor UAV long-term flight tests and to conduct multi-UAV mission management research. In addition, this thesis describes, to the best of our knowledge, the first landing and recharge of a UAV on a mobile recharge platform.
Automated ground maintenance and health management for autonomous unmanned aerial vehicles
2007
101 pages
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 99-101).
Theses
Electronic Resource
English
European Patent Office | 2018
|European Patent Office | 2018
|European Patent Office | 2019
European Patent Office | 2018
|European Patent Office | 2019
|