The ”Driver Drowsiness Detector” system aims to improve road safety by creating a real time system that can detect and alert drivers when they become drowsy or fatigued. Drowsy driving is a hazard that can result in accidents, injuries and even fatalities. This system tackles this issue by combining computer vision techniques, machine learning algorithms and sensor integration to accurately identify signs of driver drowsiness.To detect drowsiness the system takes an approach using recognition eye movement analysis and vehicle control data. It utilizes a camera positioned inside the car to monitor the driver’s face. By tracking features and movements associated with drowsiness such, as eye closure duration, head nods and changes, in facial expression.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Driver Drowsiness Detection Using Machine Learning


    Contributors:


    Publication date :

    2023-12-08


    Size :

    262799 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Driver Drowsiness Detection Using Deep Learning

    Pawar, Rupali / Wamburkar, Saloni / Deshmukh, Rutuja et al. | IEEE | 2021


    Driver Drowsiness Detection Using Deep Learning

    Jain, Anuj Kumar / Sharma, Vikrant / Goel, Sandeep et al. | IEEE | 2023


    Driver Drowsiness Detection using Deep Learning

    Nandhini, P.S. / Kuppuswami, S. / Malliga, S. et al. | IEEE | 2022


    Real-Time Driver Drowsiness Detection System Using Machine Learning

    Roy, Apash / Ghosh, Debayani | Springer Verlag | 2023


    Driver drowsiness detection

    YANG HSIN-HSIANG / PRAKAH-ASANTE KWAKU O | European Patent Office | 2015

    Free access