The ”Driver Drowsiness Detector” system aims to improve road safety by creating a real time system that can detect and alert drivers when they become drowsy or fatigued. Drowsy driving is a hazard that can result in accidents, injuries and even fatalities. This system tackles this issue by combining computer vision techniques, machine learning algorithms and sensor integration to accurately identify signs of driver drowsiness.To detect drowsiness the system takes an approach using recognition eye movement analysis and vehicle control data. It utilizes a camera positioned inside the car to monitor the driver’s face. By tracking features and movements associated with drowsiness such, as eye closure duration, head nods and changes, in facial expression.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Driver Drowsiness Detection Using Machine Learning


    Beteiligte:
    Ritesh, Aryan (Autor:in) / Jagatia, Neel (Autor:in) / Deshmukh, Pankaj (Autor:in)


    Erscheinungsdatum :

    08.12.2023


    Format / Umfang :

    262799 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Driver Drowsiness Detection Using Deep Learning

    Jain, Anuj Kumar / Sharma, Vikrant / Goel, Sandeep et al. | IEEE | 2023


    Driver Drowsiness Detection Using Deep Learning

    Pawar, Rupali / Wamburkar, Saloni / Deshmukh, Rutuja et al. | IEEE | 2021


    Driver Drowsiness Detection using Deep Learning

    Nandhini, P.S. / Kuppuswami, S. / Malliga, S. et al. | IEEE | 2022


    Real-Time Driver Drowsiness Detection System Using Machine Learning

    Roy, Apash / Ghosh, Debayani | Springer Verlag | 2023


    Driver Drowsiness Detection

    Satish, K. / Lalitesh, A. / Bhargavi, K. et al. | IEEE | 2020