A new modeling and optimization approach is proposed for co-optimization of both switched reluctance machine (SRM) design and control across the entire speed range. A unique method uses static finite element analysis (FEA) results to determine a set of current profiles for discrete speeds, torques, and torque ripple levels, and the associated voltage profiles are computed using steady state equations without time-domain simulations. Particle swarm optimization is implemented to determine optimal current profiles with the consideration of voltage limits, torque ripple, and other system parameters. Further, a machine design optimization method is proposed that leverages outputs from current profile optimizers and determines quality metrics for each design based on the torque requirements and torque ripple limits across the operation region of the targeted application.
A Framework for Multiple Objective Co-Optimization of Switched Reluctance Machine Design and Control
2021-06-21
2623078 byte
Conference paper
Electronic Resource
English