This study introduces a novel approach to autonomous motion planning, informing an analytical algorithm with a reinforcement learning (RL) agent within a Frenet coordinate system. The combination directly addresses the challenges of adaptability and safety in autonomous driving. Motion planning algorithms are essential for navigating dynamic and complex scenarios. Traditional methods, however, lack the flexibility required for unpredictable environments, whereas machine learning techniques, particularly reinforcement learning (RL), offer adaptability but suffer from instability and a lack of explainability. Our unique solution synergizes the predictability and stability of traditional motion planning algorithms with the dynamic adaptability of RL, resulting in a system that efficiently manages complex situations and adapts to changing environmental conditions. Evaluation of our integrated approach shows a significant reduction in collisions, improved risk management, and improved goal success rates across multiple scenarios. The code used in this research is publicly available as open-source software and can be accessed at the following link: https://github.com/TUM-AVS/Frenetix-RL.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    A Reinforcement Learning-Boosted Motion Planning Framework: Comprehensive Generalization Performance in Autonomous Driving


    Contributors:


    Publication date :

    2024-06-02


    Size :

    1317383 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    MULTIMODAL MOTION PLANNING FRAMEWORK FOR AUTONOMOUS DRIVING VEHICLES

    ZHANG YAJIA / LI DONG / ZHANG LIANGLIANG et al. | European Patent Office | 2022

    Free access



    Safe Reinforcement Learning with Policy-Guided Planning for Autonomous Driving

    Rong, Jikun / Luan, Nan | British Library Conference Proceedings | 2020


    Search-Based Motion Planning for Performance Autonomous Driving

    Ajanovic, Zlatan / Regolin, Enrico / Stettinger, Georg et al. | Springer Verlag | 2020