Predicting driver behavior is a key component for Advanced Driver Assistance Systems (ADAS). In this paper, a novel approach based on Support Vector Machine and Bayesian filtering is proposed for online lane change intention prediction. The approach uses the multiclass probabilistic outputs of the Support Vector Machine as an input to the Bayesian filter, and the output of the Bayesian filter is used for the final prediction of lane changes. A lane tracker integrated in a passenger vehicle is used for real-world data collection for the purpose of training and testing. Data from different drivers on different highways were used to evaluate the robustness of the approach. The results demonstrate that the proposed approach is able to predict driver intention to change lanes on average 1.3 seconds in advance, with a maximum prediction horizon of 3.29 seconds.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Learning-based approach for online lane change intention prediction


    Contributors:


    Publication date :

    2013-06-01


    Size :

    1962376 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    LEARNING-BASED APPROACH FOR ONLINE LANE CHANGE INTENTION PREDICTION

    Kumar, P. / Perrollaz, M. / Lefevre, S. et al. | British Library Conference Proceedings | 2013


    Prediction of Surrounding Vehicles Lane Change Intention Using Machine Learning

    Benterki, Abdelmoudjib / Boukhnifer, Moussa / Judalet, Vincent et al. | IEEE | 2019


    Driving Intention Recognition and Lane Change Prediction on the Highway

    Han, Teawon / Jing, Junbo / Ozguner, Umit | IEEE | 2019


    Driving Intention Recognition and Lane Change Prediction on the Highway

    Han, Teawon / Jing, Junbo / Ozguner, Umit | ArXiv | 2019

    Free access

    DRIVING INTENTION RECOGNITION AND LANE CHANGE PREDICTION ON THE HIGHWAY

    Han, Teawon / Jing, Junbo / Özgüner, Ümit | British Library Conference Proceedings | 2019